
Introduction
I will start by ‘deriving’ the limit formula defining the constant 𝑒 as lim𝑛→∞ (1 + 1

𝑛)𝑛 with the
motivation being finding a base, 𝑏, such that the function 𝑏𝑥 is its own derivative. Then I will attempt
to generalize this for positive and negative powers of 𝑒.

Throughout this article, I will try to describe my thought process behind every step. As such,
obvious disclaimer: I aim to be very intutive and beginner-friendly, and I do not pretend to be
rigorous.

Finally, before diving into the article, readers may check out the Appendix at the end that covers
elementary properties of exponentiation for a quick refresher.

Shrinking Step Sizes of Difference Quotient
So, for some 𝑓(𝑥), if I increment 𝑥 by Δ𝑥, Δ𝑦 = 𝑓(𝑥 + Δ𝑥) − 𝑓(𝑥). And the difference quotient is
Δ𝑦
Δ𝑥 = 𝑓(𝑥+Δ𝑥)−𝑓(𝑥)

Δ𝑥 . As Δ𝑥 → 0, the difference quotient converges to the derivative of 𝑓(𝑥).

My goal, then, is to find a function, 𝑓(𝑥) where this quotient is itself. So I want Δ𝑦
Δ𝑥 = 𝑓(𝑥) which,

solving for Δ𝑦 necessitates that by incrementing 𝑥 by Δ𝑥, Δ𝑦 = 𝑓(𝑥) ∗ (Δ𝑥). That is, Δ𝑦 scales Δ𝑥
by a scaling factor that is 𝑓(𝑥) itself.

2𝑥 is a Step Size of 1 Approximation
I will straight up present the function 𝑓(𝑥) = 2𝑥 as a function that when I take a Δ𝑥 = 1 step of size
1, Δ𝑦 = 𝑓(𝑥 + 1) − 𝑓(𝑥) = 2𝑥+1 − 2𝑥 = 2 ∗ 2𝑥 − 2𝑥 = 2𝑥 = 𝑓(𝑥) Thus, the difference quotient for
this step size of 1 is Δ𝑦

Δ𝑥 = 𝑓(𝑥)
1 = 𝑓(𝑥). And so the function 𝑓(𝑥) = 2𝑥 satisfies the desired property

of Δ𝑦
Δ𝑥 = 𝑓(𝑥) for Δ𝑥 = 1.

From Algorithms
Let me end this section by taking a brief, optional, detour to explain why 2𝑥 was a very plausible
function. Having a computer “science” background, I am familiar with properties of powers of 2 that
arise when dealing with binary objects. There are several recursive algorithms including binary
search, quick select, binary tree traversals, that take a problem of size 𝑁 and in a single step, reduce
it to a problem of size 𝑁2 . Thus the entire problem takes roughly log2(𝑁) steps and is very efficient.
If I treat steps taken as 𝑥 values and remaining problem size as 𝑓(𝑥) or 𝑦 values, this results in
exponential decay of 𝑓(𝑥) = 𝑁 ∗ (1

2)𝑥. When 𝑥 = 0, the problem size, or work left, is 𝑁 units of
work, when 𝑥 = 1, the problem size, or work left, is 𝑁2 units of work, and so forth. The first step
when there is 𝑁 work left saves 𝑁2 work, the second step when there is 𝑁2 work left saves 𝑁4 work,
and each successive step saves half of the work left. “Saving” per each step size where Δ𝑥 = 1 is the
negative of Δ𝑦. So saving from step 𝑥 to step 𝑥 + 1 is 𝑓(𝑥)

2 meaning Δ𝑦 = −(1
2) ∗ 𝑓(𝑥). But again,

as Δ𝑥 = 1, Δ𝑦
Δ𝑥 = Δ𝑦 = −(1

2) ∗ 𝑓(𝑥) for 𝑓(𝑥) = 𝑁 ∗ (1
2)𝑥. Note that 𝑁 does not appear in the

difference quotient at all. So I have found a function, 𝑓(𝑥) = 𝑘 ∗ (1
2)𝑥 whose difference quotient

scales itself by a factor of −(1
2). Scaling itself is a crucial property and this suggests an exponential

function is desired, though maybe not decay.

From Difference Quotient
A straight forward way to arrive at 2𝑥 is to first assume I am searching for an exponential function.
And then using algebra to set the difference quotient (with step size Δ𝑥 = 1) of the function 𝑏𝑥

equal to itself and solve for 𝑏 to get 𝑏 = 2:

Δ𝑦
Δ𝑥

= 𝑓(𝑥)

𝑏𝑥+1 − 𝑏𝑥

1
= 𝑏𝑥

(𝑏𝑥) ∗ 𝑏 − 𝑏𝑥 = 𝑏𝑥

(𝑏𝑥) ∗ (𝑏 − 1) = 𝑏𝑥

𝑏 − 1 = 1

𝑏 = 2

Smaller steps
While 𝑓(𝑥) = 2𝑥 satisfies Δ𝑦

Δ𝑥 = 𝑓(𝑥) for Δ𝑥 = 1, I want to find a different function that satisfies
this constraint for a smaller step size.

Given the function 2𝑥 is exponential and I’m working towards finding 𝑒 where 𝑒𝑥, an exponential
function, is it’s own derivative, this new function for a smaller step size is presumably exponential as
well in the form of 𝑓(𝑥) = 𝑏𝑥.

Step Size of 13
Given a function 𝑓(𝑥) = 𝑏𝑥, what should 𝑏 be, such that Δ𝑦

Δ𝑥 = 𝑓(𝑥) for Δ𝑥 = 1
3? Clearly, Δ𝑦 =

(1
3) ∗ (Δ𝑥).

This can also be seen from similar triangles, like these 3 below: TODO draw 3 side by side triangles:
1st one base 1, height f(x), 2nd one base 1/3, height (1/3)*f(x), 3rd one base dx, height dx*f(x)

So when 𝑥 increments by 13 , the resulting Δ𝑦 needs to be (1
3) ∗ 𝑏𝑥. Also, Δ𝑦 = 𝑏𝑥+(1

3) − 𝑏𝑥 So solve
for 𝑏:

𝑏𝑥+(1
3) − 𝑏𝑥 = (

1
3
) ∗ 𝑏𝑥

𝑏𝑥 ∗ 𝑏1
3 − 𝑏𝑥 = (

1
3
) ∗ 𝑏𝑥

𝑏1
3 − 1 = (

1
3
)

𝑏1
3 = 1 + (

1
3
)

𝑏 = (1 + (
1
3
))

3

So when 𝑏 = (1 + (1
3))3, the function 𝑓(𝑥) = 𝑏𝑥 satisfies the property that Δ𝑦

Δ𝑥 = 𝑓(𝑥) for Δ𝑥 = 1
3 .

This expression for 𝑏 looks suspiciously like the limit definition for 𝑒. And more generally when 𝑏 =
(1 + (1

𝑘))𝑘, the function 𝑓(𝑥) = 𝑏𝑥 satisfies the property that Δ𝑦
Δ𝑥 = 𝑓(𝑥) for Δ𝑥 = 1

𝑘 . So as 𝑘 →
∞, 𝑏 = 𝑒 = lim𝑛→∞ (1 + 1

𝑛)𝑛.

My Analysis and Terminology
Ok, so I rarely like symbolic manipulation without explanation. Let me try and explain what
happened, and to do so, I will introduce some concepts and terms. And in the next section, I’ll use
these concepts and terms to derive expressions for exponents of 𝑒.

Multiplicative Factor
The first term I will define is the “multiplicative factor” associated with a particular Δ𝑥.

I view slope and difference quotient as means to understand the behaviour of a function locally at
some 𝑥, how 𝑦 = 𝑓(𝑥) responds to some change Δ𝑥. The numerator of the difference quotient is
Δ𝑦 = 𝑓(𝑥 + Δ𝑥) − 𝑓(𝑥). Start at (𝑥, 𝑓(𝑥)) and end up at (𝑥 + Δ𝑥, 𝑓(𝑥) + Δ𝑦). Moving Δ𝑥 from 𝑥
induces the addition of Δ𝑦 to 𝑦. 𝑓(𝑥 + Δ𝑥) = 𝑓(𝑥) + Δ𝑦.

I feel it is very natural when analyzing exponential functions to consider how, for some Δ𝑥, 𝑦 gets
multiplied by some fixed multiple, the multiplicative factor, associated with moving this Δ𝑥 at all
𝑥’s. For example, take 𝑓(𝑥) = 8𝑥. As shown in the appendix, taking a step size of Δ𝑥 = 1
corresponds to a multiplicative factor of 8. And taking a step size of Δ𝑥 = 1

3 corresponds to a
multiplicative factor of 2. More generally, the multiplicative factor associated with Δ𝑥 for 𝑓(𝑥) = 𝑏𝑥

is 𝑏Δ𝑥. Because 𝑓(𝑥 + Δ𝑥) = 𝑏𝑥+Δ𝑥 = 𝑏𝑥 ∗ 𝑏Δ𝑥 So moving Δ𝑥 from 𝑥 induces the multiplication of
𝑏Δ𝑥 to 𝑦, and what 𝑦 gets multiplied by is the multiplicative factor associated with that particular
Δ𝑥. 𝑓(𝑥 + Δ𝑥) = 𝑓(𝑥) ∗ multiplicativeFactor.

Growth Factor
The second term I will define is the “growth factor” associated with a particular Δ𝑥 as
growthFactor = multiplicativeFactor − 1, so 1 less than the multiplicative factor for that same
Δ𝑥.

Why subtract 1? Recall taking a small step from any (𝑥, 𝑓(𝑥)) places me at (𝑥 + Δ𝑥, 𝑓(𝑥) ∗
multiplicative Factor). So substituting growth factor in, this places me at (𝑥 + Δ𝑥, 𝑓(𝑥) ∗ (1 +
growthFactor)). Or (𝑥 + Δ𝑥, 𝑓(𝑥) + 𝑓(𝑥) ∗ growthFactor).

The idea is that the the multiplicative factor has the action of scaling 𝑓(𝑥) so the resulting 𝑦
coordinate, 𝑓(𝑥 + Δ𝑥) = multplicativeFactor ∗ 𝑓(𝑥), is in terms of 𝑓(𝑥). And 𝑓(𝑥), the starting 𝑦
coordinate before taking the 𝑥 step of Δ𝑥, is clearly in terms itself, like 𝑓(𝑥) = 1 ∗ 𝑓(𝑥). So since the
starting coordinate is in terms of 𝑓(𝑥) and the ending coordinate is in terms of 𝑓(𝑥), their difference
as well naturally can be viewed in terms of 𝑓(𝑥) as well.

And that’s the role of the growth factor. Taking a step Δ𝑥 induces a change Δ𝑦 = 𝑓(𝑥) ∗
growthFactor. This demonstrates a key property of exponents, that the Δ𝑦 starting at a 𝑦 value of
𝑓(𝑥) is written in terms of 𝑓(𝑥). Just like how, for 𝑒, I want Δ𝑦

Δ𝑥 to be 𝑓(𝑥).

Setting the “growthFactor” to be Δ𝑥 makes sense as I’ve already shown. Δ𝑦
Δ𝑥 = 𝑓(𝑥)∗Δ𝑥

Δ𝑥 TODO link
the 3 side-by-size triangles picture.

In this case of deriving 𝑒, I set the growth factor to be Δ𝑥, but I will soon play around with different
growth factors and introduce a new term (growth rate = growth factor / delta x) in the process. And
for 𝑒 with a growth factor of (1) ∗ Δ𝑥, the growth rate is simply 1. As a preview, growth rate is
finally an actual, well established term in math that’s not something I made up: typically in math
and science, growth rate is referred to with upper or lower case 𝑟 or 𝜆.

Putting It All Together
So, approximating the base 𝑒, the growth factor taking an extremely small step Δ𝑥 should be Δ𝑥
itself. While means the multiplicative factor associated with this extremely small Δ𝑥 should be 1 +
Δ𝑥. And, again, for any base, the multiplicative factor induced by Δ𝑥 on the function 𝑏𝑥 is 𝑏Δ𝑥. So,
as Δ𝑥 → 0, multiplicativeFactor = 1 + Δ𝑥 = 𝑒Δ𝑥.

To go from 𝑒Δ𝑥 to 𝑒1, raise 𝑒Δ𝑥 by 1
Δ𝑥 . Δ𝑥 is very small, so 1

Δ𝑥 is very large and represents how
many times the multiplicative factor for step size Δ𝑥 must be compounded. For simplicity, if I want

to deal with clean integers, let the small Δ𝑥 = 1
𝑘 for a large 𝑘. Then 1

𝑘 cleanly divides 1, so simply
raise the multiplicative factor by 𝑘 to restore ‘e’. That is, 𝑒1

𝑘 ∗ 𝑒1
𝑘 = 𝑒2

𝑘 , 𝑒1
𝑘 ∗ 𝑒1

𝑘 ∗ 𝑒1
𝑘 = 𝑒3

𝑘 , and so, 𝑘
factors of 𝑒1

𝑘 will restore 𝑒1. See the Appendix if this seems confusing. So I’m done, the
multiplicaitive factor when substituting Δ𝑥 with 1

𝑘 is 1 + 1
𝑘 and it needs to be raised, again,

substituting 1
𝑘 for Δ𝑥 to the 𝑘th power. And as 𝑘 → ∞, this is the limit definition of 𝑒.

Connection with “Continuous Compounding”
This section is a quick detour, but consistent with all material so far. Viewing the growth factor in
terms of Δ𝑋 made sense from an algebraic perspective, so as to cancel out this Δ𝑋 with the Δ𝑋
denominator when computing the difference quotient derivative approximation. But I want to briefly
also explain, justify even, this by linking it to the “continuous compounding” interpretation and
expression for 𝑒, which as how I and probably most others were first introduced to this mysterious
constant.

Start by approximating continuous compounding as compounding once every Δ𝑡 units of time. (𝑡
and 𝑥 are different variable names for the same input, independent variable). So this Δ𝑡 is extremely
tiny. Say I have amount 𝑎 at 𝑡 = 0. And after a single compounding event, so now at 𝑡 = Δ𝑡, the
increase I get, this growth factor, is 𝑎𝑟(Δ𝑡). 𝑟 is the growth rate. And as Δ𝑡 is tiny, so is this
resulting product. Of course, the question is, why multiply by Δ𝑡? This comes from approximating
continous compounding. The key is the relation of the number 1 and Δ𝑡, namely 𝑘 = 1

Δ𝑡 (Mentally,
to me, this is the same as period Δ𝑡 and frequency 𝑘 (but replace 2𝜋 default trig period length with 1
time unit length)). Continous compouding means per 1 unit of time, there are 𝑘 compounding
events. As Δ𝑡 is miniscule, 𝑘 is insanely large, and with the remainder being upper bounded by Δ𝑡, I
view 𝑘 as an integer. And I view multiplying by Δ𝑡 as a scaling operation, namely, scaling down by a
factor of 𝑘 = 1

Δ𝑡 . But that’s precisely how continuous compounding works, rather than applying the
interest rate or growth factor 𝑟 once at 𝑡 = 1 after a unit of time, apply 𝑟

𝑘 , a 𝑘-scaled down rate
interest, but instead compensate by compounding it 𝑘 times.

Exponents of 𝑒
My motivation for this article was to understand the derivation of the exponential distribution as per
my CS70 (Discrete Math Probability Theory) notes. In particular, the introduction of the lambda
variable felt slightly arbitrary to me. And I also felt rusty in my understanding of the number 𝑒 and
exponentiation itself. So I compiled my thoughts in this article.

Positive integer powers of 𝑒
Ok, so for 𝑒, the associated growth factor was Δ𝑥, the step size itself. Note that this is a clean
multiple of Δ𝑥. But what if I tweak the growth factor and double it to 2Δ𝑥? Or set the growth rate,
sometimes referred to as lambda, to 2? Then the new multiplicative factor becomes 1 + 2Δ𝑥. So a
small step of Δ𝑥 now induces Δ𝑦 = 𝑦2Δ𝑥. Whereas when lambda was 1 (the case for 𝑒), the
associated Δ𝑦 = 𝑦Δ𝑥. So with a lambda of 2, doubling lambda, the change in the output,
Δ(𝑓(𝑥)) = Δ𝑦 = 2𝑦Δ𝑥 doubles as well. So, given small deltas scale linearly (local linearity
approximations), a half-step of Δ𝑥

2 would induce the same Δ𝑦 that a full step would for 𝑒. So 𝑘2
lambda = 2 steps would result in the same effect as taking 𝑘 lambda = 1 steps. And as I showed, 𝑘
lambda = 1 steps induces a multiplicative factor of 𝑒. So 𝑘2 lambda = 2 steps induces a multiplicative
factor of 𝑒 so 𝑘 steps would induce a multiplicative factor of 𝑒2. So, 𝑘 steps with the step size halved :
1
𝑘 to 1

2𝑘 (again, always allowed to do this as 𝑘 → ∞ anyways) with lambda 2 results in 𝑒2. Thus
lim𝑛→∞ (1 + 2

𝑛)𝑛 = 𝑒2 and more generally for positive integer powers lambda (𝜆),
lim𝑛→∞ (1 + 𝜆

𝑛)
𝑛

= 𝑒𝜆 And all of this is the chain rule at play.

Now to show this exact idea symbolically:

lim
𝑛→∞

(1 +
2
𝑛

)
𝑛

≈ (1 +
2
𝑘
)

𝑘

(for large 𝑘)

≈ (1 +
2
2𝑘

)
2𝑘

(replace 𝑘 with 2𝑘, 𝑘 → ∞ ⇒ 2𝑘 → ∞)

= (1 +
1
𝑘
)

2𝑘

= ((1 +
1
𝑘
)

𝑘

)
2

≈ 𝑒2

(approximate definition of 𝑒 when 𝑘 gets large)

Negative integer powers of 𝑒
TODO this section, feel tired and feel this warrants a bit more consideration and thought on my
part, like not immediately obvious to me.. Want to show what did for last section except for lambda
= −1.

Bonus: Logarithmic Differentiation to Prove Power Rule
I want to compute the derivative of 𝑥𝑛. The idea, to me, behind logarithmic differentiation is to view
any base as a power of 𝑒. That is, 𝑥 = 𝑒𝑘 | 𝑘 = ln(𝑥). Now, given the base is 𝑒 and as per the entire
note thus far, a very small Δ𝑘 induces a multiplicative factor of 𝑒Δ𝑘 = 1 + Δ𝑘 and a change in 𝑥,
Δ𝑥 = 𝑥Δ𝑘. Again because Δ𝑥 = Δ(𝑒𝑘) = 𝑒𝑘+Δ𝑘 − 𝑒𝑘 = 𝑒𝑘𝑒Δ𝑘 − 𝑒𝑘 = 𝑒𝑘(𝑒Δ𝑘 − 1) = 𝑒𝑘(1 +
Δ𝑘 − 1) = 𝑒𝑘Δ𝑘. This is consistent with the derivative, d𝑥

d𝑘 = 𝑥 | 𝑥 = 𝑒𝑘, as Δ𝑘 applied to 𝑥 = 𝑒𝑘

scales that Δ𝑘 by 𝑥 itself. So I have the relation of Δ𝑥 as Δ𝑘 scaled by 𝑥 itself, and again, this
applies for any 𝑥 = 𝑒𝑘 (even (e^n)^k which I will make use of soon), as regardless of 𝑥, the
multiplicative factor induced by the Δ𝑘 is the same, 1 + Δ𝑘. Note that this goes the other direction
as well, Δ𝑘 = Δ𝑥

𝑥 (thus the derivative of ln(𝑥) is 1
𝑥). In fact, for the purposes of the derivative of

powers of 𝑥, I eventually want to say that the Δ𝑥 induces the Δ𝑘. but point is these deltas are
related by the scaling factor of 𝑥, the starting value itself.

Ok, great. I have some connection between 𝑥 and 𝑘 and Δ𝑥 and Δ𝑘. But what about 𝑥𝑛? How can I
apply deltas to that? 𝑥𝑛 = (𝑒𝑘)𝑛 = 𝑒𝑛𝑘. So the Δ𝑥 induces a Δ𝑘 resulting in 𝑒𝑛𝑘 becoming
𝑒𝑛(𝑘+Δ𝑘) = 𝑒𝑛𝑘+𝑛Δ𝑘 = 𝑒𝑛𝑘𝑒𝑛Δ𝑘 = 𝑒𝑛𝑘(𝑒Δ𝑘)𝑛. So the Δ𝑘 induces a multiplicative factor of (𝑒Δ𝑘)𝑛.
Recall 𝑒Δ𝑘 is simply the same multiplicative factor 1 + Δ𝑘. I don’t think the exact multiplicative
factor’s value is important insomuch as the fact that the new multiplicative factor is the one I
showed earlier, raised to the 𝑛, so 𝑛 applications of it. The change in exponent of 𝑥𝑛 = (𝑒𝑘)𝑛 is
𝑛Δ𝑘, where Δ𝑘 was the change in exponent of 𝑥 induced by Δ𝑥. Chain rule vibes where the
exponent, rather than simply being incremented by Δ𝑘 is now being incremented by that 𝑛Δ𝑘, a
scalar multiple of 𝑛, so linearity as I know how 𝑥 = 𝑒𝑘 reponds to Δ𝑘 (increments by Δ𝑥 such that
Δ𝑥 = 𝑥Δ𝑘) and note that 𝑒𝑛𝑘, being an exponent of 𝑒, would respond to that same, lone, Δ𝑘 added

to its exponent the same way, the same multiplicative factor of 𝑒𝑘 = 1 + Δ𝑘, so Δ(𝑥𝑛) =
Δ(𝑒𝑛𝑘) = 𝑒𝑛𝑘+Δ𝑘 − 𝑒𝑛𝑘 = 𝑒𝑛𝑘𝑒Δ𝑘 − 𝑒𝑛𝑘 = 𝑒𝑛𝑘(1 + Δ𝑘) − 𝑒𝑛𝑘 = 𝑒𝑛𝑘Δ𝑘 = 𝑥𝑛Δ𝑘 (again, in
computing Δ(𝑥𝑛), Δ𝑘 is scaled by the value of 𝑥𝑛, the value whose delta I am trying to compute).
Now that was just for a single Δ𝑘, but there are 𝑛 of them. And each Δ𝑘 induces a multiplicative
factor whose multiplication to 𝑥𝑛 induces a Δ𝑥 of 𝑥𝑛Δ𝑘. And by local linearity of Δ𝑥 responding to
a very small Δ𝑘, 𝑛Δ𝑘 will thus result in the true Δ(𝑥𝑛) = 𝑥𝑛𝑛Δ𝑘. This is the chain rule at play.
Another way I see this, is again small deltas idea: as Δ𝑘 → 0, 𝑛Δ𝑘 → 0, and for any very small
change in exponent, be it Δ𝑘 or 𝑛Δ𝑘, the change to 𝑒𝑛𝑘 induced by said very small change in
exponent is that change itself multiplied by 𝑒𝑛𝑘 itself. Again, this reults in the true Δ(𝑥𝑛) = 𝑥𝑛𝑛Δ𝑘
for a change in exponent of 𝑛Δ𝑘. This is a bit counter intuitive to me, 𝑛 applications of a
multiplicative factor behaving linearly, but that’s the idea of local linearity is my rationale. Almost
done, I have Δ(𝑥𝑛) = 𝑛𝑥𝑛Δ𝑘, but to get the derivative with respect to 𝑥 which is the entire
problem, I need to write Δ𝑘 in terms of Δ𝑥, and I’ve already established their relation, Δ𝑘 = Δ𝑥

𝑥 , so
Δ(𝑥𝑛) = 𝑛𝑥𝑛 Δ𝑥

𝑥 = 𝑛𝑥𝑛−1Δ𝑥 ⇒ Δ(𝑥𝑛)
Δ𝑥 = 𝑛𝑥𝑛−1. Done.

Appendix: Exponentiation Basics
I’ll explore basics of exponentiation here using integers and motivate some properties of exponents,

especially the property: (𝑏𝑘)𝑥 = 𝑏𝑘∗𝑥. Firstly, what does 𝑏𝑥 mean? 𝑏𝑥 evaluates to
x times

⏞⏞⏞⏞⏞𝑏 ∗ 𝑏 ∗ … ∗ 𝑏.

Symbolically, this is a product of 𝑥 factors of 𝑏. Visually, I like to use trees that with branching factor
𝑏. For example, below shows a complete binary tree to represent 2ℎ, the case where 𝑏 = 2.

TODO draw complete binary tree, a “2-Tree” here

The levels of these trees are 0-indexed, meaning at the 0th level, there is 1 node (the root), at the 1st
level, there are 𝑏 nodes, at the second level, there are 𝑏 ∗ 𝑏 nodes. Each successive level introduces
another factor of 𝑏, since every node at the previous level splits into 𝑏 more nodes. 1 node introduces
𝑏 child nodes, 2 nodes introduce 2 ∗ 𝑏 nodes, all 𝑘 nodes introduce 𝑘 ∗ 𝑏 children. Thus, at some level,
𝑙, there are 𝑏𝑙 nodes, and the relation between successive levels is: 𝑏𝑙+1 = 𝑏𝑙 ∗ 𝑏. And this relation
naturally extends to 𝑏𝑙+𝑘 = 𝑏𝑙 ∗ 𝑏𝑘, that is, adding 𝑘 to the exponent introduces 𝑘 more factors of 𝑏
that act on 𝑏𝑙.

Different bases
Let me add another base for consideration: 8^x. Below are 2 trees side-by-side that terminate with 64
leaves.

TODO draw these trees and make them line up, so distance between levels of the 8^x would be 3x
that of 2^x tree

Observe that these two trees are quite closely related. Let me state the relation exactly as follows:
every 3 levels of doubling for the 2-Tree produces the same effect of a single level of the 8-Tree.

So the 8-Tree is a ‘compressed’ version of the 2-Tree, by a factor of 3, based on the following
equivalancy.

TODO draw another side by side picture of 3 levels of the 2-Tree and 1 level of the 8-tree, again lined
up

Because 8 = 23 = 2 ∗ 2 ∗ 2, 3 levels of doubling results in 1 level of multiplying by 8.

Let ℎ be the height of the tree where if the lowest, leaf, level is indexed at 𝑙, ℎ = 𝑙 − 1. So the 8ℎ tree
has 8ℎ leaves. When ℎ = 1, there are 8 leaves. And when ℎ = 2, there are 64 leaves. Now for the 2ℎ

tree, when ℎ = 3 there at 8 leaves. And when ℎ = 6, there are 64 leaves. So, more generally, this

shows that 8ℎ = 23∗ℎ. But 8 = 23, so 8ℎ = (23)ℎ, and this proves (23)ℎ = 23∗ℎ More generally, if 𝑋
is some number as a power of 𝑏, say, 𝑋 = 𝑏ℎ, then X^k multiplies the height of the 𝑏-tree
representation of 𝑋 by 𝑘. Note that this is only for integer values of 𝑘. I will, very soon, motivate
this for rational powers as well (namely, 𝑘 = 1

3).

Finally, and this is, I suspect how most people including myself learned exponents, I can readily see
all this when writing out factors: 82 = (8) ∗ (8) = (2 ∗ 2 ∗ 2) ∗ (2 ∗ 2 ∗ 2) = 26. The number of
factors is ℎ, the argument of 𝑓(ℎ) = 𝑏ℎ and it is evident that the number of factors in the 8-
expansion gets multiplied by 3 to get the number of factors in the 2-expansion. Like it takes 2 8’s to
write out 64 but it takes 6 = 2 ∗ 3 2’s to write out 64 using factors of all 2’s. (If you are familiar with
hexademical and binary numberings a similar compression by a factor of 4 happens where every
hexadecimal digit valued from 0-15 can be converted into 4 binary digits)

OK, but what about instead of multiplying by 3, dividing by 3. Consider 81
3 . For the function 𝑓(ℎ) =

8ℎ, the input ℎ is the height. But a fractional height doesn’t make sense? But if use the relation I just
derived, where every 1 level of the 8-Tree is equivalent to 3 levels of 2-Tree, every 2 levels of the 8-
Tree is equivalent to 6 levels of the 2-Tree, it follows that 1/3 level of the 8-Tree is equivalent to 1
level of the 2-Tree. That is, I’m assuming the ratio of 1 level 8-Tree : 3 levels 2-Tree,

𝑋 8-level = 𝑋8-level ∗ (
3 2-level
1 ∗ 8-level

) = 3𝑋 2-level

or, equivalently,

𝑋 2-level = 𝑋2-level ∗ (
1 8-level
3 ∗ 2-level

) = (
1
3
)𝑋 8-level

And so 81
3 = 21 = 2 and more generally, 𝑏 1

𝑘 = 𝑥 where 𝑥𝑘 = 𝑏. And symbollically, this is readily
displayed by (𝑏 1

𝑘)
𝑘

= 𝑏.

	Introduction
	Shrinking Step Sizes of Difference Quotient
	2x is a Step Size of 1 Approximation
	From Algorithms
	From Difference Quotient

	Smaller steps
	Step Size of 13

	My Analysis and Terminology
	Multiplicative Factor
	Growth Factor
	Putting It All Together
	Connection with "Continuous Compounding"
	Exponents of e
	Positive integer powers of e

	Negative integer powers of e
	Bonus: Logarithmic Differentiation to Prove Power Rule

	Appendix: Exponentiation Basics
	Different bases

