Introduction
I will start by ‘deriving’ the limit formula defining the constant e as lim (1+ %)n with the

motivation being finding a base, b, such that the function b” is its own derivative. Then I will attempt

n—o0

to generalize this for positive and negative powers of e.

Throughout this article, I will try to describe my thought process behind every step. As such,
obvious disclaimer: I aim to be very intutive and beginner-friendly, and I do not pretend to be
rigorous.

Finally, before diving into the article, readers may check out the Appendix at the end that covers
elementary properties of exponentiation for a quick refresher.

Shrinking Step Sizes of Difference Quotient

So, for some f(z), if [ increment z by Az, Ay = f(x + Ax) — f(x). And the difference quotient is

% = w. As Az — 0, the difference quotient converges to the derivative of f(z).
T T

My goal, then, is to find a function, f(z) where this quotient is itself. So I want % = f(z) which,
solving for Ay necessitates that by incrementing = by Az, Ay = f(x) * (Az). That is, Ay scales Az
by a scaling factor that is f(x) itself.

2” is a Step Size of 1 Approximation

I will straight up present the function f(z) = 2% as a function that when I take a Az = 1 step of size
1,Ay = f(x +1) — f(z) = 2571 — 2% = 2% 2% — 2% = 2% = f(x) Thus, the difference quotient for

this step size of 1 is 2—5 = @ = f(z). And so the function f(x) = 27 satisfies the desired property

ofﬁ—g = f(z) for Az = 1.

From Algorithms

Let me end this section by taking a brief, optional, detour to explain why 2* was a very plausible
function. Having a computer “science” background, I am familiar with properties of powers of 2 that
arise when dealing with binary objects. There are several recursive algorithms including binary
search, quick select, binary tree traversals, that take a problem of size N and in a single step, reduce
it to a problem of size % Thus the entire problem takes roughly log, (V) steps and is very efficient.
If I treat steps taken as = values and remaining problem size as f(x) or y values, this results in

exponential decay of f(z) = N x* (%)I When x = 0, the problem size, or work left, is N units of
N
2

when there is NV work left saves % work, the second step when there is % work left saves % work,

and each successive step saves half of the work left. “Saving” per each step size where Az = 1 is the
f(x)

negative of Ay. So saving from step x to step z + 1 is =~ meaning Ay = —(%) * f(z). But again,

as Az =1, 2—3 = Ay =—(3) * f(z) for f(z) = N = (%)x Note that N does not appear in the

difference quotient at all. So I have found a function, f(z) = k * (%)m whose difference quotient

work, when z = 1, the problem size, or work left, is 5- units of work, and so forth. The first step

scales itself by a factor of — (%) Scaling itself is a crucial property and this suggests an exponential
function is desired, though maybe not decay.

From Difference Quotient

A straight forward way to arrive at 2% is to first assume I am searching for an exponential function.
And then using algebra to set the difference quotient (with step size Az = 1) of the function b”
equal to itself and solve for b to get b = 2:

Ay

= f@)



Smaller steps

While f(x) = 27 satisfies % = f(z) for Az = 1,1 want to find a different function that satisfies
this constraint for a smaller step size.

Given the function 2% is exponential and I'm working towards finding e where e”, an exponential
function, is it’s own derivative, this new function for a smaller step size is presumably exponential as

well in the form of f(z) = b®.

Step Size of %
Given a function f(z) = b®, what should b be, such that i—z = f(z) for Az = %? Clearly, Ay =
1
This can also be seen from similar triangles, like these 3 below: TODO draw 3 side by side triangles:
1st one base 1, height f(x), 2nd one base 1/3, height (1/3)*f(x), 3rd one base dx, height dx*{(x)

So when z increments by %, the resulting Ay needs to be (%) * b%. Also, Ay = b2 +(5) — b% So solve
for b:

ba;+(%) — bt = (1) * bT

So whenb = (1+ (%))3 the function f(z) = b® satisfies the property that % = f(z) for Az = %
This expression for b looks suspiciously like the limit definition for e. And more generally when b =
(1+ (%))k the function f(x) = b” satisfies the property that i—i’ = f(z) for Az = % Soask —

00, b=e=I1im,_, (1+%)n.

My Analysis and Terminology

Ok, so I rarely like symbolic manipulation without explanation. Let me try and explain what
happened, and to do so, I will introduce some concepts and terms. And in the next section, I'll use
these concepts and terms to derive expressions for exponents of e.



Multiplicative Factor

The first term I will define is the “multiplicative factor” associated with a particular Azx.

I view slope and difference quotient as means to understand the behaviour of a function locally at
some z, how y = f(z) responds to some change Ax. The numerator of the difference quotient is

Ay = f(z + Azx) — f(z). Start at (z, f(z)) and end up at (z + Az, f(z) + Ay). Moving Az from z
induces the addition of Ay to y. f(z + Ax) = f(z) + Ay.

I feel it is very natural when analyzing exponential functions to consider how, for some Az, y gets
multiplied by some fixed multiple, the multiplicative factor, associated with moving this Az at all
x’s. For example, take f(x) = 8”. As shown in the appendix, taking a step size of Az = 1
corresponds to a multiplicative factor of 8. And taking a step size of Az = % corresponds to a
multiplicative factor of 2. More generally, the multiplicative factor associated with Az for f(x) = b*
is b2 Because f(z + Az) = b®HA% = b % bAT So moving Az from x induces the multiplication of
b2® to y, and what y gets multiplied by is the multiplicative factor associated with that particular

Az. f(x + Az) = f(z) * multiplicativeFactor.

Growth Factor

The second term I will define is the “growth factor” associated with a particular Az as

growthFactor = multiplicativeFactor — 1, so 1 less than the multiplicative factor for that same
Azx.

Why subtract 1? Recall taking a small step from any (z, f(z)) places me at (z + Az, f(z) *
multiplicative Factor). So substituting growth factor in, this places me at (z + Az, f(z) * (1 +
growthFactor)). Or (z + Az, f(x) + f(z) * growthFactor).

The idea is that the the multiplicative factor has the action of scaling f(x) so the resulting y
coordinate, f(z + Ax) = multplicativeFactor * f(x), is in terms of f(x). And f(z), the starting y
coordinate before taking the x step of Az, is clearly in terms itself, like f(z) = 1 % f(z). So since the
starting coordinate is in terms of f(z) and the ending coordinate is in terms of f(x), their difference
as well naturally can be viewed in terms of f(z) as well.

And that’s the role of the growth factor. Taking a step Az induces a change Ay = f(z) *
growthFactor. This demonstrates a key property of exponents, that the Ay starting at a y value of
f(z) is written in terms of f(x). Just like how, for e, I want % to be f(x).

Setting the “growthFactor” to be Ax makes sense as I've already shown. % = % TODO link

the 3 side-by-size triangles picture.

In this case of deriving e, I set the growth factor to be Az, but I will soon play around with different
growth factors and introduce a new term (growth rate = growth factor / delta x) in the process. And
for e with a growth factor of (1) * Az, the growth rate is simply 1. As a preview, growth rate is

finally an actual, well established term in math that’s not something I made up: typically in math
and science, growth rate is referred to with upper or lower case r or A.

Putting It All Together

So, approximating the base e, the growth factor taking an extremely small step Az should be Az
itself. While means the multiplicative factor associated with this extremely small Az should be 1 +
Az. And, again, for any base, the multiplicative factor induced by Az on the function b® is b%. So,

as Az — 0, multiplicativeFactor = 1 + Az = 2%,

To go from €27 to e!, raise e2® by AL. Az is very small, so AL is very large and represents how
x x
many times the multiplicative factor for step size Az must be compounded. For simplicity, if I want



to deal with clean integers, let the small Az = for a large k. Then 5 cleanly d1v1des 1, S0 simply
raise the multlphcatlve factor by k to restore ‘e’. That is, ek * ek = ek, ek * ek * ek = e, and so, k
factors of e* will restore e!. See the Appendix if this seems confusing. So 'm done, the
multiplicaitive factor when substituting Az with % isl+ % and it needs to be raised, again,

substituting % for Az to the kth power. And as k — 00, this is the limit definition of e.

Connection with “Continuous Compounding”

This section is a quick detour, but consistent with all material so far. Viewing the growth factor in
terms of AX made sense from an algebraic perspective, so as to cancel out this AX with the AX
denominator when computing the difference quotient derivative approximation. But I want to briefly
also explain, justify even, this by linking it to the “continuous compounding” interpretation and
expression for e, which as how I and probably most others were first introduced to this mysterious
constant.

Start by approximating continuous compounding as compounding once every At units of time. (¢
and x are different variable names for the same input, independent variable). So this At is extremely
tiny. Say I have amount a at ¢ = 0. And after a single compounding event, so now at ¢t = At, the
increase I get, this growth factor, is ar(At). r is the growth rate. And as At is tiny, so is this
resulting product. Of course, the question is, why multiply by At? This comes from approximating
continous compounding. The key is the relation of the number 1 and At, namely k = ﬁ (Mentally,
to me, this is the same as period At and frequency k (but replace 27 default trig period length with 1
time unit length)). Continous compouding means per 1 unit of time, there are k compounding
events. As At is miniscule, k is insanely large, and with the remainder being upper bounded by At, I
view k as an integer. And I view multiplying by At as a scaling operation, namely, scaling down by a
factor of k = i . But that’s precisely how continuous compounding works, rather than applying the
interest rate or growth factor r once at t = 1 after a unit of time, apply 7, a k-scaled down rate
interest, but instead compensate by compounding it k£ times.

Exponents of e

My motivation for this article was to understand the derivation of the exponential distribution as per
my CS70 (Discrete Math Probability Theory) notes. In particular, the introduction of the lambda
variable felt slightly arbitrary to me. And I also felt rusty in my understanding of the number e and
exponentiation itself. So I compiled my thoughts in this article.

Positive integer powers of e

Ok, so for e, the associated growth factor was Az, the step size itself. Note that this is a clean
multiple of Az. But what if I tweak the growth factor and double it to 2Axz? Or set the growth rate,
sometimes referred to as lambda, to 2? Then the new multiplicative factor becomes 1 + 2Az. So a
small step of Az now induces Ay = y2Ax. Whereas when lambda was 1 (the case for e), the
associated Ay = yAz. So with a lambda of 2, doubling lambda, the change in the output,

A(f(z)) = Ay = 2yAx doubles as well. So, given small deltas scale linearly (local linearity

f % would induce the same Ay that a full step would for e. So ’%

approximations), a half-step o
lambda = 2 steps would result in the same effect as taking k lambda = 1 steps. And as I showed, &
lambda = 1 steps induces a multiplicative factor of e. So % lambda = 2 steps induces a multiplicative
factor of e so k steps would induce a multiplicative factor of €2. So, k steps with the step size halved :
= to = (agam always allowed to do this as £ — oo anyways) with lambda 2 results in e2. Thus
hmn oo (1 + ) = e? and more generally for positive integer powers lambda ()),

lim,, (1 + = ) = e And all of this is the chain rule at play.

Now to show this exact idea symbolically:



(for large k)

(replace k with 2k, k — co = 2k — 00)

(approximate definition of e when k gets large)

Negative integer powers of e

TODO this section, feel tired and feel this warrants a bit more consideration and thought on my
part, like not immediately obvious to me.. Want to show what did for last section except for lambda
=-1

Bonus: Logarithmic Differentiation to Prove Power Rule

I want to compute the derivative of ™. The idea, to me, behind logarithmic differentiation is to view
any base as a power of e. That is, * = €* | k = In(z). Now, given the base is e and as per the entire
note thus far, a very small Ak induces a multiplicative factor of e** = 1 4+ Ak and a change in z,
Az = zAk. Again because Az = A(eF) = MOk — ek = eFeF —eF = eF(eAF —1) = eF(1 +
Ak — 1) = e*Ak. This is consistent with the derivative, Sl_i =z | x = e, as Ak applied to z = €*
scales that Ak by z itself. So I have the relation of Az as Ak scaled by x itself, and again, this
applies for any z = e* (even (e"n)"k which I will make use of soon), as regardless of x, the
multiplicative factor induced by the Ak is the same, 1 + Ak. Note that this goes the other direction
as well, Ak = % (thus the derivative of In(z) is %). In fact, for the purposes of the derivative of
powers of z, I eventually want to say that the Az induces the Ak. but point is these deltas are
related by the scaling factor of z, the starting value itself.

Ok, great. I have some connection between z and k and Az and Ak. But what about 2™? How can I
apply deltas to that? 2™ = (ek)n = €™ . So the Az induces a Ak resulting in e™* becoming

e ktAk) — gnkinik _ gnkenik — nk (eAk)n. So the Ak induces a multiplicative factor of (eAk)n.
Recall e2* is simply the same multiplicative factor 1 + Ak. I don’t think the exact multiplicative
factor’s value is important insomuch as the fact that the new multiplicative factor is the one I
showed earlier, raised to the n, so n applications of it. The change in exponent of 2™ = (ek)n is
nAk, where Ak was the change in exponent of  induced by Az. Chain rule vibes where the
exponent, rather than simply being incremented by Ak is now being incremented by that nAk, a
scalar multiple of n, so linearity as I know how = = e* reponds to Ak (increments by Az such that
Az = zAk) and note that e*, being an exponent of e, would respond to that same, lone, Ak added



to its exponent the same way, the same multiplicative factor of e = 1 + Ak, so A(z") =

A(ek) = enhtak _ gnk — gnkeAk _ enk — enk(1 4 Ak) — e™F = e"* Ak = 2" Ak (again, in
computing A(z™), Ak is scaled by the value of ", the value whose delta I am trying to compute).
Now that was just for a single Ak, but there are n of them. And each Ak induces a multiplicative
factor whose multiplication to ™ induces a Az of ™ Ak. And by local linearity of Az responding to
a very small Ak, nAk will thus result in the true A(z™) = z™nAk. This is the chain rule at play.
Another way I see this, is again small deltas idea: as Ak — 0, nAk — 0, and for any very small
change in exponent, be it Ak or nAk, the change to e* induced by said very small change in
exponent is that change itself multiplied by e™* itself. Again, this reults in the true A(z") = z"nAk
for a change in exponent of nAk. This is a bit counter intuitive to me, n applications of a
multiplicative factor behaving linearly, but that’s the idea of local linearity is my rationale. Almost
done, T have A(z™) = nx™ Ak, but to get the derivative with respect to z which is the entire
problem, I need to write Ak in terms of Az, and I've already established their relation, Ak = ﬁ, SO

A Az™) v
A(z") = nz" 2L = nz" Az =
x Az

= nz" 1. Done.

Appendix: Exponentiation Basics

I’ll explore basics of exponentiation here using integers and motivate some properties of exponents,
x times

T —m—
especially the property: (bk ) = b**®, Firstly, what does b* mean? b® evaluates to b * b * ... * b.

Symbolically, this is a product of x factors of b. Visually, I like to use trees that with branching factor
b. For example, below shows a complete binary tree to represent 2", the case where b = 2.

TODO draw complete binary tree, a “2-Tree” here

The levels of these trees are 0-indexed, meaning at the Oth level, there is 1 node (the root), at the 1st
level, there are b nodes, at the second level, there are b * b nodes. Each successive level introduces
another factor of b, since every node at the previous level splits into b more nodes. 1 node introduces
b child nodes, 2 nodes introduce 2 * b nodes, all £ nodes introduce k * b children. Thus, at some level,
I, there are b’ nodes, and the relation between successive levels is: b'T1 = b % b. And this relation
naturally extends to b'** = b x b¥, that is, adding k to the exponent introduces k more factors of b
that act on b.

Different bases
Let me add another base for consideration: 8"x. Below are 2 trees side-by-side that terminate with 64

leaves.

TODO draw these trees and make them line up, so distance between levels of the 8"x would be 3x
that of 2"x tree

Observe that these two trees are quite closely related. Let me state the relation exactly as follows:
every 3 levels of doubling for the 2-Tree produces the same effect of a single level of the 8-Tree.

So the 8-Tree is a ‘compressed’ version of the 2-Tree, by a factor of 3, based on the following
equivalancy.

TODO draw another side by side picture of 3 levels of the 2-Tree and 1 level of the 8-tree, again lined
up
Because 8 = 23 = 2 % 2 x 2, 3 levels of doubling results in 1 level of multiplying by 8.

Let h be the height of the tree where if the lowest, leaf, level is indexed at [, h = [ — 1. So the 8" tree
has 8" leaves. When h = 1, there are 8 leaves. And when h = 2, there are 64 leaves. Now for the 2"
tree, when h = 3 there at 8 leaves. And when h = 6, there are 64 leaves. So, more generally, this



shows that 8" = 23*" But 8 = 23, s0 8" = (23)h, and this proves (23)h = 23*" More generally, if X
is some number as a power of b, say, X = b", then X"k multiplies the height of the b-tree
representation of X by k. Note that this is only for integer values of k. I will, very soon, motivate

this for rational powers as well (namely, k = %)

Finally, and this is, I suspect how most people including myself learned exponents, I can readily see
all this when writing out factors: 82 = (8) * (8) = (2% 2 x 2) * (2 * 2 * 2) = 25. The number of
factors is h, the argument of f(h) = b" and it is evident that the number of factors in the 8-
expansion gets multiplied by 3 to get the number of factors in the 2-expansion. Like it takes 2 8’s to
write out 64 but it takes 6 = 2 * 3 2’s to write out 64 using factors of all 2’s. (If you are familiar with
hexademical and binary numberings a similar compression by a factor of 4 happens where every
hexadecimal digit valued from 0-15 can be converted into 4 binary digits)

OK, but what about instead of multiplying by 3, dividing by 3. Consider 83. For the function f(h) =
8", the input h is the height. But a fractional height doesn’t make sense? But if use the relation I just
derived, where every 1 level of the 8-Tree is equivalent to 3 levels of 2-Tree, every 2 levels of the 8-
Tree is equivalent to 6 levels of the 2-Tree, it follows that 1/3 level of the 8-Tree is equivalent to 1
level of the 2-Tree. That is, I'm assuming the ratio of 1 level 8-Tree : 3 levels 2-Tree,

3 2 level
X 8-level = X8-Jevel * ( eve ) — 3X 2-level

1 x 8-level

or, equivalently,

1 8-level 1
X 2-level = XM* (m) = <§>X 8-level

And so 83 = 2! =k2 and more generally, b* = x where z¥ = b. And symbollically, this is readily
displayed by (b%) =0b.
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