Expectation, Average, and Center of Mass

Introduction

My goal is to explore what the term “expectation” means in probability. I'll start off with computing
averages of discrete lists of numbers And use these averages to motivate a proposed definition of,
and the computation of, an expectation. Finally, I'll derive why the expectation can be viewed as the
center of mass of a discrete probability distribution. Everything will be done using discrete, non-
continuous, examples.

Average

I'll start of with increasingly complex calculations of averages and showcase varying interpretations
to understand them. I'll motivate expectations as a weighted average and connect the work to
uniform and non-uniform discrete probability.

Average of Two Numbers: Split the Distance
Let’s start off with the simplest case of a meaningful average, the average of two numbers, A and B.
For now, let us assume that A and B are distinct integers and also that B > A. Let’s set A = 1 and

B = 2. Let’s recall how we compute the average of a discrete list of numbers (a,, a,, ..., a,,):
1 n
an((al,aQV“’a’n)) = N*Za’z (1>
i=0

Note, we can also push the 1/N inside the summation as follows:
" q.
avg((ay,ag,...,a,)) = Z — (2)
=N

This suggests that each constituent number, a_i, has a uniform “weight” of 1/N, and clarifies it’s
contribution to the final average is a_i/N.

From Equation 1, it follows that

ave((4,B)) = 227 ®)

So we can compute avg((1,2)) = % = 1.5.

There is another way to compute this average that I will dive into:

avg((A,B)) = A+ B4

Indeed, this seems to check out: avg((1,2)) =1 + 22;1 = 1.5.

CS aside: This is the approach that I use, like most coders, to implement binary seach: a + ((b-
a)>>1). Where a and b are the start and end indices, respectively, of the window we are binary
searching on (and where >>1 is a bit shift accomplishing halving). The reason coders prefer this
approach to adding a and b and then dividing by 2 is because the addition may trigger an overflow.

Two questions arise: why does this work, and why bother doing it this way assuming I don’t care
about binary representation overflows. I'll answer them in order.

Visually, this method can be viewed as splitting the distance, that is, the difference between A and
B. Let K be this distance, that is K = B — A. Then we can rewrite our list (4, B) = (A4, A + K)
TODO: add a picture



Viewing and Generalizing Splitting the Difference as a Problem Transformation

I would like to preface this section by stating that it is semi-optional, but I would recommend
looking it over.

Say we have (A,B,C) where C > B > A How solve this. Back to (A, B) case where I view B = A + K
then I am essentially doing a translation shift by A: avg(A, B) = A+ avg(0,B— A) = A+
avg(0,K) = A+ % * K TODO insert histogram with two bars Let’s say I have a discrete list with
all unique numbers, then I can generalize this. Idea is I can extract out the lowest number and zero it
out, so the list has 1 less unique number, but all the remaining numbers have the lowest subtracted
from it. That is:

avg(ay, ay, ...a,) = a; +avg(0,ay — aq,...,a, —ay) (5)

But, including 0, we still have N numbers, we want to have N-1 numbers I believe the general
solution, the desired recursive formulation, is simply:

n—1

an(ala as, a’n) =a + * an(a27 ey an) (6)

Aside: Where does (n-1)/n come from? Well from Equation 1 and the first term being 0, we have

1
— %
N “

7

a’Vg(OaG’Q_ala’-'aa'n_al) = (ai_a’l) (7)
=2

Note the subscript in the summation being 2.

By rearranging Equation 1, we can express the summation in turn as an average:

n

Z(ai —ag) = avg(ay, — ag, ..., a, —agy) * (N —1) (8)
=2

Plugging this back in Equation 7 yields the desired (N-1)/N

Let’s test this problem transformation to our (A,B,C) case?
2
avg(A,B,C) = A+ 3* avg(B—A,C — A) (9)

Let me work this out with (1, 2, 3) which I clearly know must be 2. Indeed, expanding it all out, the
math checks out 1 + % * (1+ %) =2

So from a problem of size 3 we transform it to a problem of size 2. More generally I can now
transform a problem of size N to one of size N-1, so I've got that going for me. Which isn’t that nice
and supremely inefficient compared to simply Equation 1. This splitting difference interpretation
seems to be unyieldy past 2 numbers and I'll introduce a different interpretation shortly, that is
cleaner and connects to center of mass or ‘centrality’. But to motivate that, let’s go back to a special
case 2 numbers, and to also hint at probability.

Weighted Average of Two Numbers
Now let me upgrade (A,B) to (A,A,B). A has a “weight”, twice that of the “weight” of B. A’s weight is
2/3 and B’s weight is 1/3.

Following in my previous “in-terms-of-lowest-number” footsteps, rewrite this as (A,A,A+K) So the
average is then the sum divided by 3 which is (3A+K)/3 or A+K/3. So it’s like we’re splitting the
distance by 3.



Note, like last section, that this is not fun to generalize to more than two distinct numbers, say
(A,B,C). So I'll change perpective.

Solution: Symmetry About Center

From last example of (1,1,2) no coincidence where the average was. the distance from 1+1/3 to 1 vs
to 2 those distances relate to multiplicity of 1 being twice and 2 once. Let me explore this from the
perspective of the center. So far I've been taking the lowest number and viewing the rest as offsets
past that. The term ‘difference’ in ‘split the difference’ was relative to the lowest number. But now,
let me assume I already know the average, M (M for mean) of my lists so I will write all elements in
my lists in terms of M and differences from M.

So instead of (A, A, A+K) lets view it as (M-D1, M-D1, M+D2) where D_i are the absolute difference
of the ith number from M, abs(a_i - M) (A, A, A+K) = (M-D1, M-D1, M+D2) = (M-(M-A), M-(M-A), M
+ (B-M)) We know the sum of the elements of this list is 3*M by definition of average, Equation 1.

A+A+(A+K)=3M=M+M+M+2«D, + D, (10)
2D, + Dy =0 (11)

For the case of (1,1,2), D1 is the deficit distance on the numberline 1/3 from the average and D2 is
surplus distance 2/3 from the average. And M is such that these distances balance out.

In general for a given list (aq, ..., a,,) with average M, where d; is the offset from the average, d, =

a; — M, we have:

ai:N*M=ZM+di:N*M+idi (12)

n n
1=0 =0 =0

This implies Z?: o @ = 0 or the distances from the average sum to zero. Elements greater than the
average contribute positive d;s and elements less will contribute negative d,s. But they will balance
each other out. This results in a nice visual representation of the average as a central point where all
the distance offsets summed up cancel each other out. TODO draw numberline, plot some a_i and M,
draw “distance lines” from M to all a_i and color these lines in 2 different colors for those to the right
and left of M, say green right and red left (colors selected from a profit loss view) and then write as
caption or somethere below sum(len(red)) = sum(len(green))

Alternate Symmetry About Center View Via Comparison Against Uniformity

First I'll start with a simple motivating example and then attempt to generalize it. The example is 'm
in a group project and our group has 3 people and 4 units of work to do. I end up being the person
who “carries” everyone: I do 2 units of work and the other 2 members do 1 unit each. This checks
out because 2 + 1 + 1 = 4. But in a “fair” system, where everyone puts in the same, uniform,
amount of work, all 3 of us would put in % amount of work. % + % + % =3 x* (%) = 4, checks out.
But note that % is precisely what the average of [2, 1, 1] is. I did 2 units of work so 2 — % = % extra
work meaning the other 2 members in total had to do % less work between both of them. So each

could do % less and indeed, they both do 1 unit of work each which is % less than %.

I want to extract a priciple of conservation I have a list of numbers, L, with N elements, and where
all the elements sum to ) (L), and therefore L’s average is M = % I want to think in terms of
paritions, as I'm partitioning » (L) into N paritions using N — 1 dividers. For the simplest case, I
add 1 divider right after some index K (say 1-indexed) to partition L into 2 partitions or sublists A
and B where A has the first K elements and so it’s length is K, and B has the remaining elements
so its length is N — K. And by conservation of the total sum of elements regarless of partitioning
strategy, > (A) + > (B) = >_(L). Now if all the elements were the same, that is, they all were the



average M = % then > (A) = M x K and }_(B) = M = (N — K). But say, on average(!), that A
is greater average than M, thatis Y (A) > M x K or ) ,(A) = M * K +7 for some unknown

positive ?. Then intuitively, B would on average, be less than M.

DA+ (B)=) (I)=N*M (13)
MxK+?+)» (B)=MxN (14)
> (B)=MxN—-M+K-?=Mx(N—K)-? (15)

So in aggregate, A is 7 over the case where it would be were all the numbers uniform at the average
M, and B is exactly that same ? in aggregate under the case where it would have been.

Actually, wait, so could view L into 3 partitions, first sort L then view it as those strictly less than
M, those equal to M, those strictly greater than M. Then by this same token, in total the first group
is 7 over the uniform case, and so the last group must be ? under the uniform case. The ?’s cancel out
which is the entire point of this.

Deviations About a Moving Center From “Guess” to Zero at Average

So I have shown how the average serves as a center where the sum of deviations from it equals zero.
Now naturally, I thought, what if the center was pinned not at the average, M, but instead M — 1.
What would the sum of deviations be then? Well, those numbers in the list greater than M would
have their positive deviations increase by 1. And those numbers in the list less then M would have
their negative deviations decrease in magnitude by 1, meaning that the deviation itself actually also
increases by 1. So in total, as all N deviations increase by 1, pinning the center 1 to the left results in
an increase to sum deviation by N. And vice versa, pinning the center 1 to the right would decrease
sum deviation by N.

Guess of initial center being pinned at 0, and let the list, L, be of N positive integers. This guess is
nice because the sum deviation of the list is infact ) |(L). Again, shifting from center from 0 to 1
results in a decrease of sum deviation by N. (It’s like thinking “relatively”: pin this center at 0 and
increasing that by 1, is like decreasing all the numbers to the right by 1, the entire system/
constellation by 1.) But I want sum deviation to reduce from ) (L) to 0 to find the center that I
desire. If I move A to the right, so from 0 to A, the sum deviation would decrease by NA. Solve
>(L)=NAfor A,and I get A = %, which is where I want to pin my center to get zero sum
deviation. But this is precisely the definition of average!

Each of the A change is amplified by N where each of the IV points contributes the equivalent,
uniform, A reduction in sum deviation. So there’s this symmetry where each of the IV points is
explaining an equivalent share of the ) (L) change, which is what diving by N entails.

Average and Expectation: Weighted Coin Flip

I'll recyle the (A,B) and (A,A,B) cases to motivate intuition about the term expectation. I'll continue
to keep A =1 and B = 2. Flip heads get A, flip tails, get B both equally likely in the (A,B) case But for
the (A,A,B) case we have P(heads) = 2/3 and P(tails) = 1/3. Like imagine a bag with the elements
(A,AB). If we were to draw one out randomly a bunch of times (sampling with replacement), we’'d
expect to get A 2/3rds of the time and B 1/3rd of the time. So 2/3 and 1/3 are probabilities and
weights and they are connected to the multiplicities of A and B. Again, note that this is equivalent to
performing a weighted coin flip with P(Heads) = 2/3 and P(Tails) = 1/3.

Aside: Going the other direction, I have the probability space (A:2/3, B:1/3) and from that I can
connect it to (A,A,B). But the general case might not be so clean, there might not be a “GCD” of 1/3



in the probability distribution or a “GCD” or, non-normalized, a “GCD” of 1 where A’s count is 1 and
B’s count is 2 and 1 divides 2 as 2 is double 1 (GCD in quotes because actual GCDs are integers, and
that too, integers greater than 1) Like the key distinction 'm positing is that B’s weight may not be
exactly an integer multiple of A’s weight. It’s still a discrete probability space, but the weights (A:
P(A), B:P(B)) may be such that P(A) does not cleanly divide P(B) or vice versa. (Sidenote/"hack", I
could just take a very large number like 1,000,000 and multiply that by P(A) and P(B) and set these as
the multiplicities of As and Bs). I maintain that it’s not the weights that matter as it is their relative
composition which in this case is countB:countA = 2:1 so I can still use takeaways for the simple,
discrete, cases and extend it to general discrete probability spaces. I'll proceed to explain why I'm
comfortable doing so generally or give myself some intuition at least. A general discrete probability
space is really similar to a list of letters (A, A, B) the letters being individual outcomes but each letter
has a real number probability associated with it. And these probabilities sum to 1. In a sense our list
of letters constructions like (A,A,B) are an example of uniform probability space so first A with
weight 1/3, second A with weight 1/3, and B with weight 1/3 Note 1/3+1/3+1/3 = 1. So really we’re
paritioning a whole pie, the pie representing the number 1 or 100%, into 3 equal slices, 2 A slices and
1 B slice. Bur more generally we can parition into different slices as well, their slice compositions not
being clean like 1:1:1 or 2:1 but instead something messier where there’s no slice that can serve as a
GCD-I mean perhaps we can approximate it at various granulalities that divide all slices, but I
digress. At the end of the day, it’s all just a partion of 1 and probabilities descript the relative size of
the partitions to each other.

I'll actually take a step back first and examine (A,0) and (0,B) cases. I want to isolate the impact of
each individual outcome (A,0) case first, Say both outcomes heads or tails are equally likely. If we flip
heads we get A reward but if we flip tails we get 0 reward. If we were to do like 1000 coin flips, we’d
expect 500 heads. Our reward would be 500 * A. If we do 2000, we’d expect 1000 heads. Our reward
would be 1000 * A. As we can see, our expectation (loosely, intuitively defined) scales linearly. And
we can apply this linearity to a single coin flip. So flip once and we get A/2; it’s like some quantum/
schrodinger value of being half of a head so we reap half the reward. Same for (0,B) case, B/2. And
we can add them when thinking about (A, B) case. Isn’t linearity great? Back to (A,B). It’s like (A,0)
and (B,0) are basis vectors and adding them gives us (A,B) by linearity. Let’s see this in action. Again,
say 1000 tosses, 500heads 500tails produce reward of 500 * A + 500 * B and scale down to 1 toss by
linearity, expected profit is A/2 + B/2 Which is the average of (A,B) We can do this for (A,A,B), 1000
tosses now ~667 heads and ~333 tails, so the expected profit is roughly 667"A + 333*B Scaled down
to 1 toss, again by linearity, expected profit is % * A+ % * B. Again, this is exactly the average of
(A,AB) as each A contributes 1/N or 1/3 as N=3 so we have 2 A’s, giving us 2/3*A and we have 1 B,
giving us B/3. Which is why expectated outcome of our random variable, in our case the reward we
get doing a single coin flip, is computed by A*P(A) + B*P(B), and is equivalent to a weighted average.

And for the general case of definition expectation of a random variable over a probability space, it
generalizes to the sum of all the outcomes weighted by their associated probabilities, so again, a
weighted average. Just to hammer this expectation tied to weighted average point a final time, the
average itself of some N numbers is, again, the expectation using the uniform weight 1/N and each
number’s multiplicity is analogous to it’s probability.

Center of Mass, Discrete and 1D

So, I lied, but not really. While I'm going to hammer expectation and averages again, but in a way I
moreorless already did this earlier when I considered averages of outcomes from the perspective of
the center, splitting distances (weighted by probability of a given outcome) to enfore the sums of the
distance deviations from the right and left added up. Essentially, that’s the end of it and we’re
already conceptually done.



This section is purely for fun, and it’s actually the reason I decided to compose this note: because I
read CS70 note relating expectation to center of mass of probability distribution Wanted to explore
it, and I was pleased, and afterwards decided to contemplate what average really means and all of
this resulted in me decided to memorialize my thought process.

Moment

Ok, let me get down to business. Say we’re on a 1D number line with some points spaced out. Each
point has a mass of 1. Note that points may share the same location: this does not affect the algebra.
We could view K points with the same location as a singular point, P, just with a mass of K. It’s all
the same, just different groupings. So from now each point P has mass M. Let’s have them be clean
positive integers. The point P specifies its location on the number line and M its mass. The question
is, what is the center of mass of these points.

First, we must introduce the concept of “moment”. Let’s consider the moment about a point C' (C' for
center), and this point may be virtual, a conceptual point, just a location on the numberline we pin
down Then we need an actual, non-virtual, point P with mass M and this P produces a moment
about C' that is (P — C) * M. Classic see-saw example. So we can increase the magnitude of the
moment that P produces about C' in 2 ways, 2 levers we can pull: place P further away from C or
increase the mass of P.

Now what the center of mass is, is a point C' that may be virtual and not one of the points in our list,
where the sum of all the moments of all the points to the left of C' equals the sum of all the moments
of all the points to the right of C. There are 2 classes of points, those that fall to right of C or to the
left. Technically there are 3 classes, points that lie on C, but with zero distance these have no
moment contribution.

So, again, at the center, the sum of all the right moments equals the sum of all the left moments. This
ties into averages and splitting distance from the mean in that the distance is a component but the
weight is 1/N and again, generalize to arbitrary discrete probability distributions to weight with the
probability to get expectation.

Center of Mass as a Point Mass
So how do I actually compute the center of mass, C, as if this were a physics problem? I am given
points p; each with mass m,. There is a formula that computes C":

C— Zipi *my
Zimi

Deriving this is straightforward. Simply set sum of all moments about C' to 0. That is, ) (p; — c) *

(16)

From Equation 16, we may notice a neat idea is actually to treat the entire constellation of points as
a single point mass. This is a trick, or rather a concept, many see in physics. That is, we can
rearrange Equation 16 as such:

C*Zmi:Zpi*mi (17)

Consider an origin, O, somewhere super left of all our points pined at location 0, lets say. (O and 0
look alike so that’s cool). Then the LHS of Equation 17 is the total moment about the origin, O, that a
point mass located at C' with mass ) . m;, that is the total mass of the system, produces. And the
RHS is the total moment about the origin that each individual point produces.



Why am I introducing this center of mass as the point mass location concept? Well, it’s how I treat
expectation. Visually, sure, it serves as the balance point. But when we actually want to use an
expectation of a random variable, we’re treating it as a point mass. The point mass is the average,
representative, point location. It summarizes the points. If we want to compute the cumulative
moment the entire system produces about any given origin (and nothing forces origin to be 0, only
relative distances matter as you can verify after looking at the subsequent math) all we need is the
cumulative mass and the location of the center of mass and then we need not concern outselves with
the individual points and their associated masses. This is exactly like the expectation is the average,
representative, value of the random variable. It summarizes the random variable. It’s the location of
the center of the mass and the cumulative mass if we were to extend the analogy is simply 1, which
is convenient as 1 is multiplicative identity. That is, the expectation is simply the center of mass
multiplied by 1 or again, simply the center of mass.

I would like to present a similar approach and aim to get a formula for the point mass location
directly and then show that it happens to be exactly at the center of mass. All derivations I presume
are the same and boil down to right and left moments cancanceling somewhere and this will be no
different, and again I encourage reader to think about non-zero origin as well, so here I go.

Consider each point p,’s contribution to the total moment about O in terms its own moment about
C'. Consider the 2 cases of points p, as being stritcly greater than C' or less than C. For now, let me
ignore the third case where points are located directly on C' as they effect no moment. For p, > C
we have p, = C + K. p, has mass m; so I have:

m; xp; = m; * (C + K) (18)
and by the magic of linearity’s distribution splitting up C and K:
m; xp; =m; xC +m,; *x K) (19)

So this states that m; * p;, p;’s contribution to the moment about O, can be split into two terms
which are the moment of p, about C' (given by m; * K) and the moment of p; about O if it were
positioned at the center of mass, C' (given by m; * C). Doing this for all points to the right of C' and
summing, we have C * ) (m;) + sum of all moments to the right of C' And we can do the same for
points to the left of C' where p, = C' — K. Only thing is a sign swap And again doing this for all
points to the left of C, this time we get the negative of the sum of all moments to the left of C. So
now summing these right and left sums, we know by definition of C being center of mass, the sum
of all moments to the right of C and the sum of all moments to the left of C' will cancel out. So we’re
done. We end up with the point mass relation Equation 17. It’s all a consequence of linearity,
splitting p; into C and some delta.

Can use the same equation to compute expectation, but note the sum of the masses in this case is 1
so it’s completely consistent with the actual definition of expectation.

So what are the physics ‘moment’ analogue then for expectation. Well again, as we’ve seen so much,
it’s the deviation or distance from the expected value weighted by the associated probability. I'd like
to part with a final interpretation. Consider this to be like a gamble, mystery box where we can draw
varying numbers with varying probabilities. And we have some expected value, M (again, M for
mean). We have a choice, either pull a number and get it’s value in cash, or take M in cash.

Mathematically they are the same, but as we learn, humans are not linear and think about risk,
which is why insurance and gambling are profitable-house always wins.

Then the numbers we can draw greater than M, we get some profit and the profit we can reap itself
an expectation. Say we draw a number N, N > M. Then it’s contribution to expected profit (N —



M) x« P(N) And again, summing them over all N we get the expected surplus profit from M. And
naturally, we could then do the same thing to get the expected loss from M, and so M is set such
that these expectations are equal.

It’s all central and balanced, which is neat.

Bonus: Secant Line’s Slope as the Average Rate of Change

When first taking calculus, when motivating the concept of a derivative, you always start out with
the slope of a secant line. And this slope is referred to as the average rate of change. I want to
provide an explanation of how and why the word “average” applies as this article is about averages.

Say someone ran some distance Ad over some time At. Let me specify Ad = 15 units of distance
and leave At fixed but unspecified. They started off strong but gradually lost steam and kept slowing
down with time, but they never fully stopped. And they traveled exactly in a straight line only going
forward. TODO draw a distance vs time graph concave down with exact numbers mirroring the
example below (+5, +4, +3, +2, +1) Now say the total distance vs time graph is continuous, but I want
to piecewise discretize into n time intervals where for a given time interval, let me assume that the
runner is running at a uniform speed. To me, as n gets larger and larger, my analysis will get finer
and finer grained and this uniformity-in-interval feels more and more reasonable.

Ok, let me begin. Let n = 5. This means I partition At into 5 intervals, each spanning % units of
time. Say over the course of the first interval the runner starts strong and traverses 45 units of
distance. Then over the course of the second interval, the runner traverses +4 units of distance.
Then over the course of the third interval, the runner traverses +3 units of distance. Then over the
course of the fourth interval, the runner traverses +2 units of distance. Then over the course of the
fifth interval, the runner traverses +1 units of distance. TODO draw this discretized/linearized graph
for this n=5 coarse granularity. Note that these numbers agree with Ad =15=5+4+3+2+ 1.
Let me symbolically denote each unit of distance traversed in the ith interval as Ad,. Then Ad =
Z?: Ad,;. Summing the Adj is great, and the next step is averaging them, that is, dividing this sum
by n = 5. So avg(Ad;) = &4 = % =3.

n
Now Let me “compare against uniformity” like I did in a previous section. Now I can express Ad in
two ways, the way the runner actually ran, or the way a uniform runner with uniform speed
traversing the same distance over the same time might haveran: Ad =15 =5+4+3+2+1=
3+ 3+ 34 3+ 3. On average, the runner ran 43 units of distance per given interval and this
results in a nice, linear graph. TODO draw a new distance vs time graph same format as previous
graph, but using this uniform data, basically formaing a straight line.

So I have shown how the average distance per discrete time interval is +3, and how the graph is a
straight line. Now it is time to wrap this up by connecting distance to speed. The speed of the runner
over any given interval ¢ is %, which is the slope of the line in the ith interval in the distance vs

time graph, computed by dividing the distance traversed in the interval, Ad,, by the duration of the

interval, %. For the uniform runner case, the speed is the slope of the straight line, which is

constant across the entire graph. Per interval, the slope is = and over the course of the entire graph,
%

the slope is % which is the exact same slope. Again this is consistent with uniform speed: 15

distance over At time and 1—55 = 3 distance over any % time interval, both numbers getting chopped
by %th (I believe this is a crucial concept: the slope of the secant line is equal to the slope in the
uniform case of any given interval (As the slope in that case is the numerator and denominator both
scaled down by a factor of %)). Whereas for the actual (well n = 5 discretized granularity), non-

uniform, case the speeds from first to last intervals respectively are: =, 4=, 3, 2. L So clearly
5 35 3 3 3

5 5



the average speed is =;. But that’s the same numerator “3” that is the average interval distance
5
traversed (only scaled by, divided by, the uniform interval time of é), and so this average speed is

5
equal to the average interval speed in the uniform speed case which I showed was %! And done,
I've illustrated how the slope of the secant line is equivalent to the average speed, forn =5
intervals discretization/linearization at least.
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