
Introduction
In this note(s), I will work with a matrix 𝐴 with 𝑚 rows and 𝑛 columns. 𝐴 can be viewed as a
function that maps a vector, ⃗𝑣, in ℝ𝑛 to 𝐴 ⃗𝑣 in ℝ𝑚. I have two, closely related, goals for this note
concerning this matrix 𝐴. The first is to prove the Rank Nullity Theorem, 𝑁 = Dim(Range(𝐴)) +
Dim(Nullspace(𝐴)). And the second is to discus decomposing the domain of 𝐴 (viewed as a
function), ℝ𝑛, as the direct sum of the nullspace of 𝐴 and any complementary subspace to it in ℝ𝑛.
Note that for the second goal, one such complementary subspace to the nullspace is the rowspace, its
orthogonal complement in ℝ𝑛.

Poor Man’s Method
When I ponder about the Rank Nullity Theorem, I often end up arriving at this constructive
approach I’ve dubbed the Poor Man’s Method. In the next paragraph, I’ll provide a high-level
overview into this construction, and then I will explore an example to illustrate this idea more
concretely.

Say the matrix 𝐴 I am working with has a rank of 𝑘, that is, 𝑘 = Dim(Range(𝐴)). Then 𝑘 column
vectors of 𝐴 form a basis for the range of 𝐴, and the remaining 𝑛 − 𝑘 column vectors are redundant.
Let me say that the first 𝑘 columns of 𝐴 are linearly independent and span the entire range of 𝐴. My
Poor Man’s idea, then, is to manually create a basis for ℝ𝑛 with two classes of basis vectors that
correspond to the two classes of column vectors of 𝐴, the first 𝑘 columns and the rest. The first class
are 𝑘 standard-basis-like vectors that correspond to the first 𝑘 columns. Particularly, where the 𝑖th
such vector corresponds to the 𝑖th column vector in that the 𝑖th basis vector of ℝ𝑛 contains a 1 at
the 𝑖th entry and zeroes everywhere else. Somewhat similarly, the second class are 𝑛 − 𝑘 vectors
that correspond to the last 𝑛 − 𝑘 redundant columns. Like the first class, a vector of this class has a 1
corresponding to a given redundant column. But rather than all other entries being zero, the top 𝑘
entries will have some non-zero entry(ies) that capture the redundancy of the corresponding column
vector: so the column vector is redundant in that it can be expressed as a linear combination of the
first 𝑘 columns with some weights and thus the top 𝑘 entries would be those same weights (but
negative). These 𝑛 − 𝑘 second class basis vectors are in linearly independent and are all in the
nullspace of 𝐴 by design, and the 𝑘 first class basis vectors are not in the nullspace of 𝐴 (that would
violate the presumtion of the first 𝑘 columns of 𝐴 forming a linearly independent set- read the
Appendix if this is unclear). Together these two classes of basis vectors are 𝑛 in number and form a
linearly independent set, confirming their designation as a basis of ℝ𝑛, so it must be that the 𝑛 − 𝑘
second class basis vectors form a basis for the nullspace of 𝐴 and thus the Rank Nullity Dimensions
add up: 𝑛 = 𝑘 + (𝑛 − 𝑘).

Let me start with two vectors, 𝑎1 and 𝑎2 in ℝ3 that are non-zero vectors and are not scalar multiples
of each other. Then I can concatenate them to form the 3 by 2 matrix 𝐴 = (𝑎1 𝑎2). The range of 𝐴
has a dimension of 2 and visually, it is the plane that is span(𝑎1, 𝑎2). And the nullspace of 𝐴 is
empty except for the trivial zero vector, so the dimension of the nullspace is 0 (See the Appendix if
you are not comfortable with this). So Rank Nullity holds as 𝑛 = 2 = Dim(Range(𝐴)).

The Proper Method
Visual Remarks
You are an explorer in the world ℝ𝑛 Let me take the familiar case where I am working with a matrix
𝐴 with first two columns independent and the third column a linear combination of the first two.
The domain is thus ℝ3, which you are exploring. You are at some point in this domain. If you
traverse along the nullspace, so along 𝑛, that is an infinite line in a particular direction, you get no



reward. So you pick some direction 𝑣1 where 𝑣1 is a unit vector and you take one step in that
direction. You obtain the reward vector 𝐴𝑣1. You take 𝑘 steps and obtain the reward vector 𝑘𝐴𝑣1. So
this line you walk along maps to a line in the reward space, or the range of 𝐴.

You note that for some 𝑘𝐴𝑣1 reward, you can actually reach it in an infinite number of ways: take 𝑘
steps along 𝑣1 and take any number of steps along 𝑛. (Side remark: a key idea in proof, to me, is that
taking steps through along the nullspace is not just a way, but in fact it is the only way to generate
duplicate rewards). So in fact now you have a plane, span(𝑣1, 𝑛⃗), which you can traverse to get all
rewards of the form, 𝑘𝐴𝑣1, or a line in the reward space.

This plane is 2-dimensional and you are in a 3-dimensional domain, and the reward space, or the
range, is 2-dimensional but, confined to the exploring the input plane of span(𝑣1, 𝑛⃗), you can only
reach one dimension in the reward space, 𝐴𝑣1, but you know there is one more dimension to the
reward space you have not explored. And you know there exists a direction that is outside the plane
that you have not explored

So as an explorer who wants to explore, you repeat the procedure and take some unit vector
direction, 𝑣2, that is outside this plane. Before actually steping along this direction you ask yourself
if this will let you get some, non-zero, reward that is outside span(𝐴𝑣1)? Note that with this choice
of 𝑣2, the set of vectors {𝑛⃗, 𝑣1, 𝑣2} form a basis for your input domain, ℝ3. Again, the reward space,
or the range, is 2-dimensional and traversing the plane only takes you along one line in the reward
space. So there must exist some “interesting” direction you can take to get a reward outside of this
line, or else the dimension of the range would be 1 and not 2. Whatever this heretofore unexplored
“interesting” direction must be, as {𝑛⃗, 𝑣1, 𝑣2} form a basis for all the directions you can explore, this
direction must be able to be represented as a linear combination of that basis or some (uninteresting)
steps along the plane and some (interesting) steps along 𝑣2. So 𝑣2 itself is an “interesting” direction
as well, as traversing it must then let you reach a reward outside span(𝐴𝑣1)!

Appendix: Linear Independence, Dependence, Redundancy,
Nullspace
Let me start by reviewing the definition(s) of linear independence and dependence.

A set of vectors {𝑎1, 𝑎2,…, 𝑎𝑛} is linearly independent if the only way to form the zero vector, ⃗0, by
taking a linear combination of the them is when all the weights are 0. That is, 𝑥1𝑎1 + 𝑥2𝑎2 +…+
𝑥𝑛 ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑎𝑛 = ⃗0 only when all the 𝑥𝑖 are themselves 0. All the 𝑥𝑖 being 0 is known as the trivial solution
to this equation. Note, the above equation can be written in matrix form as 𝐴 ⃗𝑥 = ⃗0 where 𝐴 =

(𝑎1 𝑎2 … 𝑎𝑛) and ⃗𝑥 =
⎝
⎜⎜
⎛
𝑥1
𝑥2
⋮
𝑥𝑛⎠
⎟⎟
⎞. Then, if the only solution to this equation is 𝑥 = ⃗0, {𝑎1, 𝑎2,…, 𝑎𝑛} is

linearly independent. And matrix 𝐴 has a trivial nullspace only containing the zero vector.

And if a set of vectors is not linearly independent, then it is linearly dependent. This means that
there exists a nontrivial solution to 𝑥1𝑎1 + 𝑥2𝑎2 +…+ 𝑥𝑛 ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑎𝑛 = ⃗0.

An upshot is of this is that at least one of the 𝑎𝑖 can be expressed as a linear combination of the
remaining vectors. To see this for a set of linearly independent vectors, consider the nontrivial

solution, ⃗𝑥 =
⎝
⎜⎜
⎛
𝑥1
𝑥2
⋮
𝑥𝑛⎠
⎟⎟
⎞. At least one of the 𝑥𝑖 is not 0 so from 𝑥1𝑎1 + 𝑥2𝑎2 +…+ 𝑥𝑛 ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑎𝑛 = ⃗0,

𝑥𝑖 ⃗𝑎𝑖 =∑
𝑗≠𝑖
−𝑥𝑗 ⃗𝑎𝑗



⃗𝑎𝑖 =∑
𝑗≠𝑖
−(

𝑥𝑗
𝑥𝑖
) ⃗𝑎𝑗

Observe that this upshot means that every vector in a linear independent set cannot be expressed as
a linear combination of the other vectors. Visually, it “juts out” of the span of the other vectors.

Another upshot is that the matrix 𝐴, again formed by concatenating the 𝑎𝑖, has a nontrivial
nullspace. Since 𝐴 ⃗𝑥 = ⃗0 for a non-trivial ⃗𝑥, the nullspace of 𝐴 contains that non-zero ⃗𝑥 at the very
least. Moreover, the nullspace contains all scalar multiples of ⃗𝑥 as well, span( ⃗𝑥) or 𝑘 ⃗𝑥. I can show
this by taking the equation, 𝑥1𝑎1 + 𝑥2𝑎2 +…+ 𝑥𝑛 ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑎𝑛 = ⃗0, and multiplying both sides by 𝑘 to get 
𝑘𝑥1𝑎1 + 𝑘𝑥2𝑎2 +…+ 𝑘𝑥𝑛 ⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑎𝑛 = ⃗0. 𝑘 ⃗0 = ⃗0 and thus 𝑘 ⃗𝑥 also satisfies the equation 𝐴(𝑘 ⃗𝑥) = ⃗0.

Linear Independence And Uniqueness
I will show that 𝐴 ⃗𝑥 = ⃗𝑏 has exactly one solution when the columns of 𝐴 form a linearly
independent set. If ⃗𝑏 = ⃗0, this is evident by the definition of linear independence, as the solution is 
⃗𝑥 = ⃗0.

Suppose for contradiction that 𝐴 ⃗𝑥 = ⃗𝑏 has two solutions, 𝑢⃗ and ⃗𝑣 where 𝑢⃗ ≠ ⃗𝑣, then:

𝐴𝑢⃗ = 𝐴 ⃗𝑣 ⇒ 𝐴𝑢⃗ − 𝐴 ⃗𝑣 = ⃗0 ⇒ 𝐴(𝑢⃗ − ⃗𝑣) = ⃗0

But this means I have found a non-trivial vector in the nullspace of 𝐴, 𝑢⃗ − ⃗𝑣. Which means the
columns of 𝐴 did not form a linearly independent set to begin with.

Now this is a very terse proof that I would like to delve into a bit more and provide some visual
intuition for. This might get a bit intimidating, but I assure the reader that I will add concrete and
simple examples to provide solid intuition. So don’t worry if this and the next paragraph are hard to
immediately understand. The key step to try to understand is, by linearity, 𝐴𝑢⃗ − 𝐴 ⃗𝑣 = 𝐴(𝑢⃗ − ⃗𝑣). 𝑢⃗
and ⃗𝑣 are weights to the columns of 𝐴 and for a particular column, 𝑎𝑖, its weight will be the 𝑖th
entry of 𝑢⃗ minus the 𝑖th entry of ⃗𝑣 Visually, 𝐴𝑢⃗ − 𝐴 ⃗𝑣 is an offset vector that, when added to 𝐴 ⃗𝑣
using the “head to tail” vector addition method, restores the vector 𝐴𝑢⃗. Each column of 𝐴 visually, is
an axis, and 𝐴 ⃗𝑣 means start the 𝑖th entry units of ⃗𝑣 along the 𝑎𝑖 axis. Then to get to 𝐴𝑢⃗, along every
axis 𝑎𝑖, I need to add the 𝑖th entry of 𝑢⃗ minus the 𝑖th entry of ⃗𝑣 units along 𝑎𝑖 to arrive at where 𝐴𝑢⃗
rests along that axis. And as this must be done over all the axes that are the columns of 𝐴, the offset
vector is 𝐴(𝑢⃗ − ⃗𝑣).

And the approach is to set the offset equal to ⃗0. As 𝑢⃗ ≠ ⃗𝑣, at least one of the entries of the offset
vector, 𝐴(𝑢⃗ − ⃗𝑣), is non-zero. Let’s say the 𝑖th entry of the offset vector is non-zero. So the offset to 
𝐴 ⃗𝑣, which must be ⃗0, is some non-zero along 𝑎𝑖. But this means for the offset to be ⃗0, there must be
contributions along the remaining axes that cancel out this non-zero contribution along 𝑎𝑖. But this
would imply that the axis 𝑎𝑖 is redundant and falls along the span of the other axes.

Now I can only visualize things in 2 or at most 3 dimensions. So, for a simple and concrete toy
example, say I have two vectors in ℝ2, 𝑎1 and 𝑎2, that are linearly independent. Let 𝑎1 = (

1
0) and let

𝑎2 = (
1
1). I intentionally set 𝑎1 to be on the x-axis, to show that 𝑎2 has some y-component “jutting

out” that is orthogonal to the x-axis. As 𝑎1 and 𝑎2 are two linearly independent vectors in ℝ2,
together they span all of ℝ2. So consider a general vector, (𝑥𝑦). I want to show how it is uniquely
specified by some vector ⃗𝑥 = (𝑥1𝑥2) as weights for a linear combination of the 𝑎𝑖, so where (𝑥𝑦) =
𝑥1𝑎1 + 𝑥2𝑎2.

Due to the choice of 𝑎1 being on the x-axis, this is quite easy. I will need 𝑥2 to be 𝑦 because only 𝑎2
has a 𝑦 component. Note that 𝑥2 must be exactly 𝑦 because any more and this overshoots vertically,



and there is no way by traversing any distance along 𝑎1, the x-axis, horizontally to undo the
overshooting. Likewise, if 𝑥2 is less than 𝑦, there is no way when strictly confined to movement
along the x-axis to make up the deficit along the y-axis. Plugging 𝑥2 = 𝑦 into (𝑥𝑦) = 𝑥1𝑎1 + 𝑥2𝑎2,

(𝑥𝑦) = 𝑥1𝑎1 + 𝑦(11)

(𝑥𝑦) = 𝑥1𝑎1 + (𝑦𝑦)

(
𝑥 − 𝑦
0 ) = 𝑥1𝑎1

(
𝑥 − 𝑦
0 ) = 𝑥1(

1
0)

(
𝑥 − 𝑦
0 ) = (

𝑥1
0 )

𝑥1 = 𝑥 − 𝑦

That is, 𝑥2 = 𝑦 accounts for the 𝑦 component, but 𝑥2 of 𝑎2 also contributes 𝑦 along the x-axis, thus
only 𝑥 − 𝑦 contribution along the x-axis is needed so 𝑥1 = 𝑥 − 𝑦.

And all of this is forced. Let me extend this to 3 dimensions. Say I have a 𝑎1, 𝑎2, and 𝑎3 that form a
linearly independent set where 𝑎1 and 𝑎2 lay on, and span, the x-y plane, and so 𝑎3 has some z-
component that juts out. This similarly forces 𝑥3 to account for the z-component, and now I have
reduced the problem to a subproblem but with 2 vectors, 𝑎1 and 𝑎2 and 2 weights, 𝑥1 and 𝑥2.

Back to the ℝ2 case, where I have some 𝑎1 and 𝑎2 that span all of ℝ2, but I want to be general. Sure I
could rotate the system and treat 𝑎1 as the x-axis. But let me not and instead try to invoke classic
“head to tail” vector addition. Say I have the vector 𝑥1𝑎1 + 𝑥2𝑎2 that is a linear combination of the
basis with weights (𝑥1𝑥2). I want to show that there cannot be a different vector, (

𝑥′1
𝑥′2
) such that 

𝑥1𝑎1 + 𝑥2𝑎2 = 𝑥′1𝑎1 + 𝑥′2𝑎2. As (𝑥1𝑥2) ≠ (
𝑥′1
𝑥′2
), at least one of the pairwise entries must be different.

Without loss of generality, say 𝑥1 ≠ 𝑥′1. And again, without loss of generality let 𝑥1 > 𝑥′1 (if 𝑥1 <
𝑥′1, swap the roles of (𝑥1𝑥2) and (

𝑥′1
𝑥′2
)). Now 𝑥1𝑎1 + 𝑥2𝑎2 can be viewed as 𝑥1 units along the axis 𝑎1

and then 𝑥2 units along the 𝑎2 axis. That is using (𝑥1𝑥2) as weights. But now consider (
𝑥′1
𝑥′2
) as

weights, where 𝑥′1 < 𝑥1 and 𝑥′2 is unknown. First, move 𝑥′1 along the 𝑎1 axis. Observe that there is a
deficit of 𝑥1 − 𝑥′1 units along the 𝑎1 axis. The question is, what should 𝑥′2 be? If I set to be 𝑥2, the
deficit remains unaccounted for. No matter what, movement along the 𝑎2 axis cannot account for the
𝑥1 − 𝑥′1 unit deficit along the 𝑎1 axis, because of the linear independence: 𝑎1 is not on the 𝑎2 axis.
Purely algebraically, rearrange 𝑥1𝑎1 + 𝑥2𝑎2 = 𝑥′1𝑎1 + 𝑥′2𝑎2 to (𝑥′2 − 𝑥2)𝑎2 = (𝑥1 − 𝑥′1)𝑎1 And by
linear independence, I’m done, since no matter what 𝑥′2 is, movement along the 𝑎2 axis cannot
restore the deficit along the 𝑎1 axis.
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